Uncertainty principles for integral operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Principles for Integral Operators

The aim of this paper is to prove new uncertainty principles for an integral operator T with a bounded kernel for which there is a Plancherel theorem. The first of these results is an extension of Faris’s local uncertainty principle which states that if a nonzero function f ∈ L(R, μ) is highly localized near a single point then T (f) cannot be concentrated in a set of finite measure. The second...

متن کامل

Some concavity properties for general integral operators

Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.

متن کامل

some concavity properties for general integral operators

let $c_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{d}$. each function $f in c_{0}(alpha)$ maps the unit disk $mathbb{d}$ onto the complement of an unbounded convex set. in this paper, we study the mapping properties of this class under integral operators.

متن کامل

Integral operators

1 Product measures Let (X,A , μ) be a σ-finite measure space. Then with A ⊗ A the product σalgebra and μ ⊗ μ the product measure on A ⊗A , (X ×X,A ⊗A , μ⊗ μ) is itself a σ-finite measure space. Write Fx(y) = F (x, y) and F (x) = F (x, y). For any measurable space (X ′,A ′), it is a fact that if F : X×X → X ′ is measurable then Fx is measurable for each x ∈ X and F y is measurable for each y ∈ X...

متن کامل

Integral Restriction for Bilinear Operators

We consider the integral domain restriction operator TΩ for certain bilinear operator T . We obtain that if (s, p1, p2) satisfies 1 p1 + 1 p2 ≥ 2 min{1,s} and ‖T‖Lp1×Lp2→Ls < ∞, then ‖TΩ‖Lp1×Lp2→Ls < ∞. For some special domain Ω, this property holds for triplets (s, p1, p2) satisfying 1 p1 + 1 p2 > 1 min{1,s} . 2010 Mathematics Subject Classification: 42B25.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2014

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm220-3-1